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The structure of nonlinear waves in a uniform disperse medium has been studied quite thoroughly [1-4]o The 
equations describing nonlinear waves have continuous periodic solutions corresponding to periodic steady-state waves. 

There also exists a physically meaningful solution in which the derivative is discontinuous at one point~ The profile of 
this solution is symmetric about the discontinuity and corresponds to an isolated pulse (an isolated wave)~ 

For the case of weak dispersion, the system of equations reduces to a single equation whose steady-state 

solution, which corresponds to an isolated wave, was found by Cortweg-de Brise, and whose transient self similar 

solution was found by Berezin and Karpman [4]. 

It was noted in [2] that an account of dissipation disrupts the symmetry of the isolated wave and causes the 

formation of a damped wave train. It is shown below that a similar situation occurs when there is no dissipation if the 

nonlinear wave is propagating in a nonuniform medium. 

1. We c o n s i d e r  the  e v o l u t i o n  of a m a g n e t o s o n i c  w a v e  e x c i t e d  in a p l a s m a  by a m a g n e t i c  p i s ton .  We r e s t r i c t  the 
d i s c u s s i o n  to the c a s e  in wh ich  H]/8~r >> nomc 2, and we take  into accoun t  the  d e v i a t i o n  of  the  p l a s m a  f r o m  q u a s i  

n e u t r a l i t y .  

The system of equations describing this wave is analogous to that derived in [i, 3] for a uniform medium. The 

only difference is in the normalization of the magnetic field: 

/ / - -  //o (t) = (4~en o (O)/H o (0)) [qo -- % (t)]: (1.1) 

H e r e  H 0 (t) and 90 (t) a r e  the m a g n e t i c  f i e ld  i n t e n s i t y  and the e l e c t r i c  f i e l d  p o t e n t i a l  ahead  of  the shock  w a v e  a t  an  a r b i -  
t r a r y  t i m e ;  H0(0) and cP0(0) a r e  the  s a m e  q u a n t i t i e s  a t  t = 0; n0(t) i s  the  ion  d e n s i t y  a t  the  w a v e  f r o n t ;  and n0(0) i s  the 

ion  d e n s i t y  a t  t = 0. 

The  t i m e  d e p e n d e n c e s  of H0and q~0 a r e  due  to the  n o n u n i f o r m i t y  of the  m e d i u m .  We se t  

He (t) = (4:~eno (O)lHo (0))% (t). (1.2) 

We use the following dimensionless variables: 

n u ~ [Snno (0) M yl~ v ~ ~ 4~eno (0) _ 

, r = ( ~ ) ' l ' t ,  - - f  4~eno(O) "/, x Y -  ~ ~--aS~ ) ' (1o3) 

where n is the ion density and M is the ion mass. Then the initial system of equations has the form 

Ou + u  ou _ O~ Oq § O(qu) =0, O ~ = ~ _ q .  (1o4) 
o-u Oy Oy ~ Oy ayU - 

At a sufficiently great distance from the piston in a nonuniform medium, the wave is almost independent of the 
initial conditions and may be assumed self-similar. On the basis of dimensionality considerations, we specify the 

law of motion of the wave front [5]: 

dY__ Uo y(~ )=  Uo ln[ i_r162 I (1.5) 

where a characterizes the medium nonuniformity, and u 0 is the wave velocity at t = 0. 

In the coordinate system moving with the wave front, we seek the self-similar solution in the form 
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w: W ( ~ )  9 =  ~(~]) Q('q) w=uq-uo (1.6)  
t - -  ~ ' ( t  - -  ~ ) ' ~  ' q : ( I  - -  ~ r )  - - - - - ~  ' " 

Here ~? = y - Y(T) is the self-similar variable. Significantly, the profiles of all the quantities behind the wave front 

remain constant in time; only their amplitudes change. 

Substituting (1.6) into (1.4), we find a system of equations for the representatives W, 9, and Q: 

d W 2 ~(W - uo) + - ~  ( ~ - } -  ~7) = O, ?.~Q -[- ~ff-~ ( Q W)  = O. d2..__~_ - -  ~ := - -  2 . (1.7)  

The boundary conditions for W, 9, and Q are specified ahead of the wave front, at the point ~ = 0: 

w (0) = 1, Q (0) : i ,  ~v (0) = t,  ~ '  (0) = 0 (1.8) 

It follows from (1.5), (1.6), and (1.8) that the wave propagates through the plasma with an exponentially increasing 

d e n s i t y  n ~ no(O) e x p  ( - 2 ~ y / U o )  t o w a r d  n e g a t i v e  y. 

2. We now discuss the case in which the nonuniformity is much larger than the dispersion length a << Io The 

presence of the small parameter ~ permits us to use a special perturbation theory for solving system (1.7) on the 

interval 0 _< ~) -< a -l, which corresponds to the most interesting region near the wave front. 

Fig. i 

Using the method of joined expansions worked out in [6], we find, with an accuracy of order ~, the approximate 
integrals of the first two equations of systems (1.7) are 

Q =  ~ o ( w +  2a~l) -~, w =  [%2+ 2 ( 1 -  T)] % - a ~ l .  (2 .1)  

Substituting (2.1) into the third equation of (1.7), we find the following equation for the potential: 

d~tF _ tF _ uo 
d ~  [Uo ~ + 2 (t --  'F)]'~ + a~" (2 .2)  

Equation (2.2) is equivalent to the equation of motion of a nonlinear oscillator with a slowly varying potential energy: 

V = --~/2 T 2 - -  a0 [up 2 ~- 2 (i - -  T)]% -~ udm ] In ] [u0~ + 2 (t - -  ~)]'/' -}- a~] [. (2 .3)  

B y  a n a l o g y  w i t h  t h e  n o n l i n e a r  o s c i l l a t o r ,  w e  c a n  e s t a b l i s h  t h e  w a v e  s t r u c t u r e .  

[ 

F i g .  2 

In  t h e  c a s e  of  a u n i f o r m  m e d i u m  o~ = 0, o s c i l l a t o r y  m o t i o n  w i t h  a n  i n f i n i t e  p e r i o d  ( and  e n e r g y  E = - u ~  - 1 / 2 )  

c o r r e s p o n d s  to  a n  i s o l a t e d  w a v e .  W h e n  t h e r e  i s  d i s s i p a t i o n ,  t h e  o s c i l l a t o r  u n d e r g o e s  d a m p e d  o s c i l l a t i o n s  w i t h  a f i n i t e  

p e r i o d .  T h i s  m e a n s  t h a t  a d a m p e d  w a v e  t r a i n  a r i s e s  b e h i n d  t h e  f r o n t  [2, 4]. 

In the case of a nonuniform medium, the potential energy profile V(9) (Fig. I) rises with increasing 7; this is 
equivalent to a decrease of the oscillator energy. 
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The nonuniformity of the medium thus leads to a wave of oscillator structure, with the individual maxima 
separated by a distance of the order of the dispersion length 2~ = H0/47rn0e (Fig. 2)~ 

The authors thank R. G. Sagdeev for useful advice. 

RE FE R E N C E  S 

1. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, "Nonlinear oscillations in a ra ref ied  plasma,"  Yadernyi 
sintez, vol. 1, p. 82, 1961. 

2. R. Z. Sagdeev, "Collective p rocesses  and shock waves in a plasma,"  collection: Problems of P lasma Theory 
[in Russian], no. 4, Atomizdat,  Moscow, 1964. 

3. C. E. Longmire,  Elementary  P lasma Physics  [Russian translation],  ch. 7, Atomizdat, Moscow, 1966. 
4. Yu. A. Berezin and V. I. Karpman, "Theory of transient waves of finite amplitude in a ra ref ied  p lasma,"  

ZhETF, vol. 46, p. 1880, 1964o 
5. Ya. B. Zel 'dovich and Yu. P. Raizer ,  Physics  of Shock Waves andHigh-Tempera ture  Hydrodynamic Phenomena 

[in Russian], ch. 12, Fizmatgiz,  Moscow, 1963. 
6. M. D. Van Dyke, Perturbat ion Methods in Fluid Mechanics [Russian translation],  ch. 5, Mir, Moscow, 1967. 

27 August 1968 

Novosibirsk 

780 


